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ABSTRACT 

This study is a qualitative documentation of the main flow features over an 

Unmanned Combat Air Vehicle (UCAV) 1303 model by flow visualization techniques 

where it gives the first understanding of the UCAV maneuverability under steady and 

unsteady maneuver conditions. The relevant fluid flow physics is not available presently 

and, hence, this thesis concentrated on generating those critical details. Towards this goal, 

model studies were conducted on the United States Air Force (USAF) geometry, 

described as same UCAV 1303, which is essentially a flying wing in the Naval 

Postgraduate School (NPS) water tunnel using dye-flow visualization technique. This 

study adapted the UCAV model 1303 for the NPS water tunnel by incorporating multiple 

ports for dye injection and was manufactured using rapid prototyping techniques. To 

obtain conditionally sampled flow images, especially for unsteady flow conditions, 

special phase locking circuitry was designed, fabricated and integrated with high 

resolution digital cameras and tunnel flow monitoring software. Flow visualization 

images at various Reynolds numbers, model attitudes and pitch rates were obtained. 

Strong vortical flow was observed as expected for a 47 degree delta-wing. The shallow 

sweep angle and tail-less geometry seemed to present some unusual aerodynamic 

characteristics in regard to vortex bursting. 
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I. INTRODUCTION  

A. DESCRIPTION OF WORK 

The operational requirements of next generation Unmanned Combat Air Vehicle 

(UCAV) demand many complicated maneuvers. Being a pilotless vehicle, it allows 

performing such maneuvers that are not generally permitted for a piloted aircraft. Mission 

requirements for such UCAVs include reliably performing varieties of combat roles, such 

as flying surveillance missions, strike and suppression of enemy air defenses, attack of 

both fixed and maneuvering targets, routine take-off from and return to carrier decks. For 

successful design and operation, a thorough and basic understanding of the flow field 

over such configurations is required. 

Since present fluid flow physics knowledge over maneuvering UCAVs does not 

exist readily, the objective of this thesis is to qualitatively document the main flow 

features over a UCAV 1303 model using the methodologies of flow visualization. The 

successful interpretation of these fluid flow patterns is an important tool used in the 

investigation and studies of the physics behind the complex three-dimensional eddying 

motion and turbulence.  Flow visualization provides the first insight on the UCAV 

maneuverability by observing the location and time of vortex bursting in relations to 

aerodynamic lift under steady and some unsteady conditions.  

Model studies were conducted on the United States Air Force (USAF) geometry - 

UCAV 1303 [1, 2] in the Naval Postgraduate School (NPS) water tunnel using dye-flow 

visualization technique. This geometry is currently being evaluated by the USAF in 

various wind tunnels and computational studies with many researches in steady flows. 

Thus, unsteady aerodynamics knowledge of the same configuration will add to the 

knowledge base on the geometry and enable better designs. The geometry, in particular, 

uses a shallow sweep angle delta wing, without vertical tails with a cranked trailing edge. 

These features lead to many unique flow features, especially the formation and bursting 

of the well-known delta wing leading edge primary vortices that actually enable the delta 
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wing to produce large lift coefficients. The bursting process of these vortices is of great 

interest in this case because it is notably affected by the absence of a vertical tail. 

B. FLOW OVER A DELTA WING: MECHANICS OF VORTEX 
DEVELOPMENT AND BURSTING 

For delta wings undergoing a positive angle of attack, it is well known that, due to 

flow separation on the surface during flight, two rotating vortices in the opposite 

directions are created by the leading edge of the wing. Flow that was originally attached 

on the lower surface at modest angle of attack turns outward at severe turning and 

approaches the leading edge when flow separates and developed. Due to the difference in 

pressure from the lower and upper surfaces of the delta wing, a primary vortex is created 

on both sides of the upper wing when the shear layer rolls-up and moves inward. The 

vortex axis is positioned approximately above the lifting surface at one vortex core 

diameter in slender wings and nearer to the surface for wings that are non slender. 

These rotating leading vortices at the edges caused increased flow velocities, and 

as a result, according to Bernoulli theorem, cause low static pressure regions. This 

produces large suction forces near to the leading edge on the surface, which generates an 

additional lift commonly known as vortex lift. The loss of leading edge suction, due to 

flow separation, causes a small increase in drag. At high angles of attack, these vortices 

cause a delta wing to generate the advantage of additional vortical lift, which further push 

the stall angle of attack, resulting in a good maneuverability for a larger range of angles 

of attack.  

The primary vortex core is approximately circular region of high vorticity with an 

axisymmetric flow. The flow in the vortex cores looks like a rotating jet [3]. The vortex 

core diameter increases linearly along the downstream, and it results in the conical shape 

of the vortical region. This conical structure is enclosed by a complex three-dimensional 

unsteady flow. The vortex flow is highly unsteady, with a maximum of time averaged 

axial velocity which is larger than the freestream flow velocity. As a result of the 

interaction between the primary vortices and the boundary layer, secondary vortices are 

brought on by lateral flow towards the leading edge under the primary vortex cores. 
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Outboard movement of the primary vortex at the surface boundary layer encounters an 

adverse pressure gradient, which causes it to separate and form a secondary vortex. 

Secondary vortices, which are smaller, tend to have a vorticity of opposite sign and 

collapse faster than primary vortices. Secondary vortices produce an inward displacement 

of the primary vortices to a greater effect, if the boundary layer is laminar. This is 

because the flow separation occurs faster and the secondary vortices are bigger. There 

may also be higher order vortical structures between the primary and secondary vortices 

[4]. 

C. ANGLE OF ATTACK 

The typical features of the vortices developed on a delta wing are clearly 

dependent on the angle of attack of the wing. When it increases,  

1. The strength and size of the vortex increase [5]. 

2. The inclination angle of the vortex path, with respect to the wing surface, 

increases linearly. For this reason, the plane containing the two vortex cores moves away 

from the wing surface [5]. 

3. The location of vortex collapse moves forward on the chord in the 

direction of the apex of the wing. This movement reduces the surface where the vortex 

suction forces are, and as a result induces lift losses on the back of the wing [5]. 

4. With increasing angle of attack, these fluctuations become more 

significant [5]. 

5. In particular, at low Reynolds number, the path of the vortices is sensitive 

to angle of attack with inboard movement at increasing angle of attack. This sensitivity to 

angle of attack decreased at high Reynolds number [5]. 

6. The presence of local separation over the main wing, and also the control 

surfaces, thus makes aircraft control difficult. 
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D. REYNOLDS NUMBER AND MACH NUMBER 

The structure of the vortex is especially sensitive to the Reynolds number. This is 

an important consideration, since the Reynolds number (Re ≈ 104) for water tunnel is 

about two orders of magnitude below the Reynolds number (Re ≈ 106) of  a typical wind 

tunnel and about three to four orders of magnitude below the Reynolds number (Re ≈ 107 

to 108) for flight [5]. Nonetheless, if the flow separates from a sharp edge, it is likely to 

be much less sensitive to changes in the turbulent regime. 

A low Reynolds number means the influence of viscosity is increased. This 

explains the consequence of a change in Reynolds number. For a 50° delta wing with 

sharp edges, the vortex structure is sparse at low Reynolds number (Re = 4,300), and it 

becomes denser with an increase of Re [3]. The maximum jet velocity in the vortex core 

increases with Reynolds number [4]. At Re = 8,700, a typical vortex collapse was 

observed and a secondary vortex structure forming outboard of the primary vortex could 

be observed [3, 4, 6]. This secondary vortex observed at higher Re undergoes collapse 

more upstream than the primary vortex, and it is possible that it starts the primary vortex 

breakdown [6]. When the Reynolds number increases, the leading edge vortices collapse 

sooner. The vortices path is shifted outboard and the angle between the vortex core axis 

and the wing surface increases. In addition, the transition from coherent to collapse 

vortices seems less sudden when Re increases, with a spiral mode at low Re and a form 

of collapse unclear at high Re.  

When the Reynolds number increases past 30,000, the flow achieves an 

asymptotic state and becomes nearly independent to Reynolds number. For such high 

Reynolds numbers, the collapse of the vortex occurs near to the peak, even at small angle 

of attack of a few degrees. Results such as these validate the current lower Reynolds 

number study. For the experiments previously mentioned, the Reynolds number was 

modified by changing the velocity, and so an increase of the Reynolds number came with 

an increase of the Mach number. In the experiment by Luckring [7], the temperature 

could be increased so as to increase the local speed of sound and keep the Mach number 
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constant. As a result, the effects of Mach number and Reynolds number could be studied 

separately in his experiment, whereas in the other experiments [3, 8, 9], it was not 

possible to distinguish their respective effects. With Re = 6 x107 separation occurred at 

13° instead of 11° with Re = 6 x106, and the suction coefficient was 80% higher for the 

higher Re [5]. The Reynolds number sensitivity seems to be partially eliminated when 

using a sharp leading edge, which can be explained by the fact that the sharp edge forces 

the separation at the leading edge. In fact, it is this feature that justifies the present test as 

well. 

The Mach number of the flow establishes the importance of the compressibility 

effects, and also has a great affect on the vortex development. An increase in the Mach 

number leads to more considerable instabilities and hence to an earlier vortex collapse. 

These results are confirmed by Luckring [7], who found that an increase of the Mach 

number between 0.4 and 0.6 promotes leading edge separation.  

E. UNMANNED COMBAT AERIAL VEHICLE 

1. Design of UCAV 1303 

The designs of a typical aircraft, where all the considerations and requirements 

related to the human crew are no longer limitations, are not the same as the design of a 

UCAV. All systems that are associated to the pilots, such as ejector seat, environmental 

control system, canopy and display devices are no longer necessary. As a result, with 

more functional space, the UCAV design can be lighter. The aerodynamic and stealth 

considerations are given a greater influence on the designed shape since the performance 

and maneuverability of the UCAV are no longer referenced from human tolerance to high 

acceleration but on the engine and airframe structural parameters. Different from 

conventional aircraft, UCAV can be employed in high risk environments without threat 

to life where their life cycle and operating costs are lower as well. 

Woolvin [1, 2] has evaluated the performances of three configurations of 30 

(aspect ratios 6.7), 47 (aspect ratios of 3.8) and 60 (aspect ratios 2.0) degrees. The general 

shape was flying wings without tail where propulsion is generated by a single engine 
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placed on the UCAV centerline. One of the significant interests of flying wings is to 

present a low observability, rather than maneuverability, and consequently a better 

survivability. Indeed without a tail, the radar cross section is significantly lower, which 

means that the aircraft is stealthier and hence, its survivability greatly improved. 

Moreover, aircraft without a tail is aerodynamically efficient, with low drag, and the 

engine integration is easier. The drawbacks are the difficulties in providing directional 

stability and control from an entirely horizontal lifting surface, and an increased tendency 

to side-slip. The longitudinal control is also limited due to the short moment arm of the 

elevators. Hence, the maneuver capability is limited. A solution to overcome the absence 

of horizontal or vertical tail is to use split ailerons or drag rudders and a thrust vectoring 

nozzle to provide yaw control [1, 2]. One of the major challenges with the development 

of flying wings is to understand the flight control systems associated with these 

configurations. With the 1303 and its “lambda” shape, there is an additional problem 

because the flow tends to separate over the outboard wing and therefore over the trailing 

edge devices installed here [5]. 

High leading edge sweep angle shapes have better stealth properties and result in 

favorable drag characteristics at supersonic speeds. One interest of the trailing edge 

cranks is that the radar cross section is minimized when the trailing edge use the same 

sweep angle as the leading edge, or when the trailing edge is aligned with the leading 

edge of the opposite side of the wing. Moreover, several components, such as the engine, 

fuel tanks, weapons bays and undercarriages, have to be fitted in the flying wing, and the 

crank angles allow the accommodation of all the components within a reduced area 

resulting in a lighter and stealthier UCAV. And lastly, the trailing edge control surfaces 

(ailerons, drag rudders), which are used for the three longitudinal, directional and lateral 

controls are more efficient at an appropriate sweep angle. 

These UCAV were first sized using Defense Science and Technology 

Laboratory’s air vehicle Conceptual Design and Optimization program, in order to obtain 

a minimum basic mass empty. The basic mass empty is defined as the sum of structure, 

propulsion and equipment masses [10]. Basic mass empty estimation is critical, 

especially when a new project starts and usually very little information is available to the 
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engineer, but nevertheless an estimated value is required [11]. According to Woolvin [1, 

2], basic mass empty is used as the “figure of merit,” which is minimized in the 

conceptual design process because, at a given ‘technology level’, basic mass empty is 

seen as having a direct influence on vehicle procurement cost. The scale of the engine 

could be modified according to the needs. The propulsion system had a minimum length, 

which is responsible for the shape of the 47° and 30° wings, which are over-sized in order 

to fit the engine. As a result, these vehicles were using only 50% of the volume available 

for fuel. The designed aircraft has to meet a number of requirements, such as a reasonable 

center of gravity position, a maximum take-off distance to reach a 50 feet screen height, 

the ability to carry enough fuel for the mission radius required, and the ability to achieve 

a minimum specific excess power at M = 0.8 at sea level. It is expected the 30° wing has 

highest lift over drag ratio, and the 60° wing has the lowest. However, the 47° wing has 

the best results with the lower basic mass empty for the whole radius range. The basic 

mass estimation increases with the mission radius. This was expected because in order to 

carry more fuel, a more powerful engine was needed. The 60° and 47° wings were 

limited by the take-off distance requirement, and the 60° wing could not reach the higher 

mission radii, whereas the 30° wing was limited by the specific excess power 

requirement. The 30° wing is much heavier than the other wings because it is too 

oversized, and so even if the lift over drag ratio is lower, the drag is too large and 

necessitates a heavy engine to reach the thrust requirement. 

Therefore, for the requirements imposed, the 47° wing has the lower basic mass 

empty. The 60° wing has also a low basic mass empty but a limited mission radius, and 

the 30° wing is too heavy unless the specific excess power requirement is relaxed. 

2 Modifications of UCAV 1303 Model 

The basic UCAV shape, which is used in this thesis, is a thin flat model 

established on the 1303 shape. The 1303 is a single engine UCAV with 47° leading edge 

sweep and +/- 30° and +/- 47° trailing edge sweep [1]. As already stated, this shape had 

the best basic mass empty for the Defense Science and Technology Laboratory study [1]. 

The 1303 was first developed by the US Air Force Research Laboratory.  
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Using SolidWorks® to re-design the given 3-D CAD of the 1303 prototype 

(Figure 1), building the model by rapid prototyping process and common workshop tools, 

the modifications made to the given prototype are the overall scale down of the given 

1303 prototype from 13” wind-span to 9” (Figure 2), modifications of the given 1303  

prototype from dye passage to the dye tubes (Figure 3) and the re-design of the sting 

assembly to fit onto the C-strut model support of the NPS water tunnel (Figure 4 and 

Figure 5).   

 

 

Figure 1. Three-dimensional modeling of UCAV 1303 using SolidWorks® 
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Figure 2. Dimensions of UCAV 1303model used in NPS water tunnel 

 
 
 

   

Figure 3. Dye tubes modifications of UCAV 1303 model used in NPS water tunnel 
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Figure 4. Sting assembly of the modified UCAV 1303 prototype 

 

 

Figure 5. Perspective view  UCAV 1303 showing sting assembly 

From literature searches, previous studies have shown that the aerodynamic 

performance [12] for Mach numbers from 0.45 to 1.4, in the Boeing Polysonic Wind 

Tunnel, for a range of angle of attack from -2° to 20°. This upper value was too small to 

observe the stall, lift loss and nose-up pitching moment [12].  In addition, the 1303 

Sting Assembly 

Dye Tubes 
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aerodynamic performances have been evaluated by Qinetiq [13], as well, in a low speed 

wind tunnel between Mach, M = 0.13 to 0.30 and with reference to the mean 

aerodynamic chord, the Reynolds numbers, Re = 3.1x106 to 8.5x106. A number of 

shapes, like baseline, sharp, and rounded shapes were studied [14]. The lift coefficient 

increases linearly till approximately 9° angle of attack, and then there is a slight reduction 

in the slope because of the increasing scale of flow separation on the upper-side of the 

wing. The maximum lift coefficient is achieved at about 20°. 

With Mach number increase, compressibility effects cause an earlier vortex 

collapse and the flow separates more inboard. An increase of the Reynolds number 

causes a delayed vortex bursting due to the transition line moves forward on the chord, 

and the turbulent boundary layer is more resilient to separation. Transition bands were 

not use, unlike the U.S. Air Force Research Laboratory model, and so the level of the 

laminar flow was not possible to be determined. This effect was constrained with sharp 

leading edges where well-established leading edge vortex (LEV) flows were possibly 

present. 

The baseline design is neutrally stable until about 9° angle of attack (or 6° with a 

sharp leading edge), and then a strong pitch up is seen due to the development of the LEV 

and the loss of lift at the back.  At about 16°, the pitch up reverses as the LEV collapse 

and the pressure increases on the windward side near from the trailing edge. At around 

23° angle of attack, the pitching moment turns negative [5]. Since a flying wing has a 

restricted longitudinal control power, the pitch up point at first instances is possibly to be 

the upper limit of the flight envelope. It is clear that the complex aerodynamics of this 

plan form needs to be studied and properly understood in great detail over a range of flow 

conditions, if superior operational functionality is to be derived from its use. 



 12

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 



 13

II. METHOD OF APPROACH 

A. NPS 15” × 20” FLOW VISUALIZATION TUNNEL  

The NPS 15” × 20” water tunnel is a closed circuit facility suitable for studying a 

wide range of aerodynamic and fluid dynamic phenomena. The facility is operated as a 

continuous flow channel. Its key design features are high flow quality and horizontal 

orientation. The horizontal configuration provides easy model access, enables the model 

to be readily set-up without draining the water from the tunnel. The test section is 

constructed mainly of glass to permit maximum viewing of the model that allows 

simultaneous viewing from the top, bottom, both sides and from the rear.  Photography is 

setup through the bottom and sides of the test section.  

 

Figure 6. NPS 15” x 20” Flow visualization water tunnel 

1. Model Support  

The NPS 15” × 20” flow visualization water tunnel model support system utilizes 

a C-strut to vary the pitch angle and a turntable to vary the yaw angle.  The model 

support includes the capability to perform motions in the roll axis. The roll mechanism 
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consists of one main cylindrical support that attaches to the C-strut. The cylindrical 

support houses a DC gear motor and an encoder. The roll mechanism is water-proofed 

and has a moisture detection system in case water leaks inside the support. If moisture or 

water is detected, a red light will go on at the tunnel front panel. The range of motion of 

the large C-Strut is limited from 0° to 40° when the roll mechanism is installed. The C-

strut and the turntable are driven by remotely-controlled electric DC motors and the pitch 

and yaw angles are displayed in digital form. The C-strut arrangement permits continuous 

pitch motions up to 50° between the limits of -10° and 110°. This is accomplished by a 

sliding C-strut/sting assembly that allows the initial pitch angle to be set at -10° and in 

15° increments from 0° to 60°. From any initial pitch angle, motor-driven angular 

motions of up to 50° are allowed. Angles of attack from 10° to -110° are achieved by 

rolling the model 180° around the sting. The turntable normally provides ±30° in yaw. 

The entire model support is lifted off the top of the test section during experimental set-

up. The UCAV 1303 model is accessed by rotating the model support platform on hinges 

attached to a permanent base plate about a horizontal axis perpendicular to the test 

section centerline. 

 

Figure 7. Mounting of UCAV 1303 onto NPS 15” × 20” water tunnel 
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2. Motion Control 

With the inclusion of position feedback in the motor drive controller, the NPS 15” 

× 20” flow visualization water tunnel is able produce high-resolution motions with 

minimum vibration or undesirable unsteadiness. The water tunnel model support is 

equipped with a DC permanent magnet planetary gear motors with HP incremental 

optical encoders. The 24 volt motor, which is also used in the roll mechanism, has a gear 

ratio of 36:1, and provides a maximum speed of 5,700 rpm at no load and a maximum 

continuous torque of 102 in-oz. The HP encoder, which has a resolution of 512 cycles per 

revolution, provides the required position feedback to obtain accurate motions in the 

three axes. The motors installed in the model support are shown in Figure 8. 

 

Figure 8. Yaw, pitch and roll motors of the NPS 15” × 20” water tunnel 

The DC motors are driven and controlled with an off-the-shelf system 

manufactured by nuLogic. The nuDrive™ is a complete power amplifier and system 

interface unit for up to four axes of servo or stepper motion control. For servo motors, 

nuDrive™ utilizes PWM amplifiers with a user specified peak output current rating and a 

DC voltage. The front panel, Figure 9 contains both Power and Enable switches for direct 

motor inhibiting and system power down operations.  
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Figure 9. Control panel of NPS 15” × 20” Flow Visualization Water Tunnel 

The nuDrive™ unit is connected to a PC control board, which is a four axis servo 

motor control board that provides high performance motion control for IBM compatible 

computer systems. Each axis can be programmed for velocity, acceleration and position 

control in both continuous and point-to-point motion. Closed loop servo performance is 

fully programmable via a time sampled digital filter control loop. For dynamic tests, 

accurate motions are specified via software (LabView™) and the motion data, as well as 

the force/moment data, can be stored for later display and analysis. For simple flow 

visualization tests, the model support can be operated manually inside the software in the 

“Move Model” panel that allows changing the model position in any axis. 

B. DYE INJECTION 

One of the simplest ways to visualize liquid flows is the use of colored dye in the 

study of complex three-dimensional flows over a delta wing. For the experimental set-up 

in the NPS 15” × 20” water tunnel, the colored dye is injected into the water tunnel flow 

from dye tubes inserted in to the leading edge of the UCAV 1303 model just beneath the 

surface of the wing. The path of the dye flow was carefully and meticulously manipulated 
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at the regions of the UCAV 1303 model to capture the required flow visualization 

information. Four ports were placed symmetrically on either side of the fuselage where 

two of the dye tubes are placed to capture the flow visualization around the critical region 

of the wing/body junction position.  It is recognized that when the stream carrying the 

dye and all effects of dye injections are minimized only then will the true flow features 

revealed. Other methods include use of chemicals that initiate dye producing reactions at 

the desired points in the flow. For dye visualization to work correctly, the dye tubes 

interference were kept to be negligibly small since the released dye is contained in the 

wake of the tube. Efforts were made to prevent the wake from becoming unstable. When 

the wake becomes unstable, the turbulence of the wake diffuses the dye and proper 

visualization could not be achieved. The rate at which the dye released was ensured to 

match with the velocity of the stream around the UCAV 1303 model. If there is a large 

mismatch, the shear across the dye boundaries with the surrounding liquid could produce 

a totally different and unacceptable picture of the flow. For this case, the injection 

velocity should be minimized. 

Food coloring used in the NPS 15” × 20” water tunnel was selected because it is 

readily available, inexpensive, neutrally buoyant, stable against mixing, provides good 

visibility contrast, non-toxic and non-corrosive. 

It is observed that prolonged use of the food dye resulted in a build-up of dye in 

the water tunnel and thus, the flowing liquid has to be changed as soon as it becomes 

cloudy. During the course of the experiments, although the use of a bleaching chemical 

like Clorox will extend the operation time considerably, it uses are kept to a minimum 

because of the realization that it might corroded and damaged the gaskets and rubber 

seals of the water tunnel thereby causing leakage. The buoyancy was adjusted by diluting 

the concentrated food coloring with water. At high Reynolds number, it is necessary to be 

careful about the diffusion of the food coloring, since it can make the vortex collapse 

region less distinct.  
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C.  CAMERA TRIGGER CONTROL SYSTEM 

Since flow visualization images were required at various instantaneous angles of 

attack, and also, since the top- and side-views of the flow were recorded using two 

different cameras, it became necessary to devise a special arrangement to simultaneously 

document the flow pictures in a phase-locked manner. Figure 10 shows the schematic 

drawings of the phase-locked data acquisition system used for the maneuvering UCAV 

1303 model unsteady flow images in the NPS water tunnel laboratory.  

 

 

 

 

Figure 10. Schematic of phase-locked data acquisition 

The camera trigger control system consists of the modified Nikon D80 remote 

external shutter control MC-DC1 with a cable attached to the internal contacts, as shown 

in Figure 11. 
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Figure 11. Modified Nikon MC-DC1 hooked-up to Ni USB-620 digital converter  

The motion-control software for the cameras uses Labview™ run-time engine and 

an executable program called “2LineCameraControl”.  

The NuDrive™ encoder inputs are monitored by the NI™ USB-6210 digital 

counter input port and resolved into degrees by the software. After the software has 

processed the input signals from NuDrive™, the data are relayed back to the unit where it 

sends out a signal to trigger the cameras at the pre-determined angle.  

The “2LineCameraControl” software (Figure 12) considers the number of degrees 

between shutter operations, fine-tuned the number of “ticks” of the encoder to optimize 

synchronization of degrees read and then arm / disarm the shutters. 
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Figure 12. Motion-control software, “2LineCameraControl”, for the Nikon 80 cameras. 
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III. RESULTS 

A. STEADY FLOW 

Figure 13 and Figure 14 show typical flow visualization images obtained at angle 

of attack, α = 6° and angle of attack, α = 14° for Re ≅ 4,000. At this low velocity 

condition, the flow is laminar, and it is easy to see that for the case of angle of attack, α = 

6°, the flow exhibits remarkable symmetry. Also, the leading edge vortex has not formed 

in the region visualized, as can be inferred from the fact that the dye simply expands as it 

flows downstream, with the outer streaks being pushed towards the wing tips by the 

spanwise flow that develops on the wing. The slight lifting of the yellow dye in the side-

view is believed to be due to the upstream effect of the nut on the sting. 

 
Figure 13. Angle of attack, α= 6°, Water tunnel velocity, U∞ = 2,  [in/s],  Re = 4.11×103 

 

Figure 14. Angle of attack, α= 14°, Water tunnel velocity, U∞ = 2,  [in/s],  Re = 4.11×103 

Introduction of red-dye 
at wing underside 
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In Figure 14, for the case of angle of attack, α = 14°, the dye-streaks emanating  

from the same outer locations now flow towards the fuselage near the trailing edge crank 

location indicating a possible tip stall that is forcing them that way. Also, a symmetrical 

spiral breakdown is seen at about 80% chord. 

B. EFFECT OF ANGLE OF ATTACK AT STEADY FLOW 

 

Figure 15. Water tunnel velocity, U∞ = 6 [in/s],  Re = 1.24×104, angle of attack, α = 00 

Figure 15 presents the flow details at angle of attack, α = 00 for a higher Re = 12, 

400. Once again, exceptional flow symmetry can be seen. Some flow reversals appear to 

be present behind the cranked portion of the trailing edge around the engine / wing-body 

junction. As the angle of attack is increased from 00 to 60 (Figure 16, Figure 17 and 

Figure 18), the flow appears essentially similar to what was seen in Figure 13, with no 

separation other than possibly the tip stall mentioned above. The fuselage flow deviates 

slightly from the symmetry pattern; however, its displacement does not seem to have any 

preference as can be deduced from the blue-dye streak patterns. By angle of attack, α = 

80 (Figure 19), some asymmetry and a spiral breakdown is seen in the outer dye, but the 

inner flow appears to be essentially what was seen at lower angles of attack. There also 

appears to be some trailing edge flow reversals present, since the yellow dye is smeared 

locally. 
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Figure 16. Water tunnel velocity, U∞ = 6 [in/s],  Re = 1.24×104, angle of attack, α = 20 

 

 

 

Figure 17. Water tunnel velocity, U∞ = 6 [in/s],  Re = 1.24×104, angle of attack, α = 40 
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Figure 18. Water tunnel velocity, U∞ = 6 [in/s],  Re = 1.24×104, angle of attack, α = 60 

 

 

 

Figure 19. Water tunnel velocity, U∞ = 6 [in/s],  Re = 1.24×104, angle of attack, α = 80 
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Figure 20. Water tunnel velocity, U∞ = 6 [in/s],  Re = 1.24×104, angle of attack, α = 100 

By angle of attack, α = 100 (Figure 20 to Figure 23), the spiral breakdown pattern 

is found on the outer flow, as can be expected, since the effects of leading edge vortex 

have not been felt on the inner flow towards the fuselage on the port side. The flow over 

the fuselage, however, has encountered abrupt (bubble type) bursting on the starboard 

side, which also has caused the wing/body junction flow away from the fuselage and 

marked asymmetry has developed in the local flow (see blue dye). Beyond this point, 

(Figure 23 to Figure 26), the flow completely breaks down. 
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Figure 21. Water tunnel velocity, U∞ = 6 [in/s],  Re = 1.24×104, angle of attack, α = 120 

 
 

 

Figure 22. Water tunnel velocity, U∞ = 6 [in/s],  Re = 1.24×104, angle of attack, α = 140 

Reverse Flow Area  
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Figure 23. Water tunnel velocity, U∞ = 6 [in/s],  Re = 1.24×104, angle of attack, α = 160 

 

 

Figure 24. Water tunnel velocity, U∞ = 6 [in/s],  Re = 1.24×104, angle of attack, α = 180 
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Figure 25. Water tunnel velocity, U∞ = 6 [in/s],  Re = 1.24×104, angle of attack, α = 200 

 

 

Figure 26. Water tunnel velocity, U∞ = 6 [in/s],  Re = 1.24×104, angle of attack, α = 220 



 29

C. EFFECT OF REYNOLDS NUMBER, Re  

 

Figure 27. Water tunnel velocity, U∞ = 2 [in/s],  Re = 4.11×103, angle of attack, α = 60 

 

 

Figure 28. Water tunnel velocity, U∞ = 15 [in/s],  Re = 3.08×104, angle of attack, α = 60 
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The effect of Reynolds number is to promote vortex breakdown, which is easily 

seen in Figure 27 to Figure 30. At low Re, the flow is well behaved angle of attack, α = 

60, but the outermost portions of the flow are indicating vortex bursting at a higher Re. 

By angle of attack, α = 100, the breakdown process has become quite severe at the higher 

Re. 

In an effort to study the roll-up process, red-dye was introduced from the wing 

underside and in Figure 31, slight pooling of the red-dye can be seen, showing that there 

are pockets of re-circulating flow set up there. However, in the case of Figure 32, angle 

of attack, α = 120, tip stalling appears to be present since the starboard tip is all red. 

Similar results are observed in Figure 33 and Figure 34. 

 

 

Figure 29. Water tunnel velocity, U∞ = 2 [in/s],  Re = 4.11×103, angle of attack, α = 100 
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Figure 30. Water tunnel velocity, U∞ = 15 [in/s],  Re = 3.08×104, angle of attack, α = 100 

 
 
 

  

Figure 31. Water tunnel velocity, U∞ = 2 [in/s],  Re = 4.11×103, angle of attack, α = 120 

 
 
 
 
 
 
 

Introduction of red-dye 
at wing underside 
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Figure 32. Water tunnel velocity, U∞ = 15 [in/s],  Re = 3.08×104, angle of attack, α = 120 

 
 

 

Figure 33. Water tunnel velocity, U∞ = 2 [in/s],  Re = 4.11×103, angle of attack, α = 140 

Pooling of  
red-dye 
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Figure 34. Water tunnel velocity, U∞ = 15 [in/s],  Re = 3.08×104, angle of attack, α = 140 

 
D. UNSTEADY FLOW 

 

Figure 35. Vortices formation & breakdown at angle of attack, α= 6o, U∞ = 10 [in/s], Re 
= 2.05×104, non- dimensional pitch rate, α+ = 0.05 
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Figure 36. Vortices formation & breakdown at angle of attack, α= 14o, U∞ = 10 [in/s], 
Re = 2.05×104, non- dimensional pitch rate, α+ = 0.05 

 
 

 

Figure 37. Vortices formation & breakdown at angle of attack, α= 6o, U∞ = 10 [in/s], Re 
= 2.05×104, non- dimensional pitch rate, α+ = 0.1 
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Figure 38. Vortices formation & breakdown at angle of attack, α= 14o, U∞ = 10 [in/s], 
Re = 2.05×104, non- dimensional pitch rate, α+ = 0.1 

It is well known that unsteadiness delays stall onset or vortex bursting. As a 

preliminary study, simple ramp tope pitching studies were conducted wherein the model 

was pitched from angle of attack, α = 0° to 40°, at different rates defined by the non-

dimensional pitch rate, U
c

αα+ ∞= , where α  is the dimensional rate of pitch, and the 

other variables have their usual meaning. It is clear from the reviews of Figure 34 to 

Figure 38 that at the same angle of attack and Reynolds number, increasing the 

unsteadiness from 0.05 to 0.1, delays the stall onset significantly.  

E. DISCUSSION OF RESULTS 

1. Vortex Collapse 

Spiral and bubble vortex collapses are the two regular types of vortex bursting. 

From the experiments, spiral vortex collapse was observed. At 14° (Figure 22), the 

collapse took place at around x/c = 0.4 where spiraling motion was observed just before 

the collapse. 
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At 18° to 22° (Figure 24 to Figure 26), the location of the vortex collapse was 

difficult to estimate, but spirals are observed just before the collapse. Stagnation points 

are seen along the spanwise in the region of reverse flow where the bubble type vortex 

completely breaks down.    

These observations proved that the spiral-type vortex collapse is the most 

common on the UCAV 1303 geometry. 

2.  Flow Mechanics  

From the recorded velocity of the water-tunnel at 6 in/s (0.15 m/s) and angle of 

attack at 6° (Figure 18), since the vortices strength increases with angle of attack, the 

vortex structure was not evidently observed, as well as the absence of vortex collapse 

over the wing of the UCAV 1303 model. The path followed by the dye is about a straight 

line with seemingly a low flow vorticity. 

At 8° (Figure 19) and 10° (Figure 20), the flow can be expected to have a higher 

vorticity at the higher angles of attack because the higher lift generated infers that as 

vorticity increases, the angle between the vortex core axis and the wing surface increased 

as well. At 10° (Figure 20) the sub-structure is still there and has moved outboard.  

At Re ≅ 4,000, flow visualization images obtained at angle of attack, α = 6° and α 

= 14° are shown in Figure 13 and Figure 14.  It is observed that at angle of attack, α = 6°, 

the flow shows very good symmetry because the flow is laminar at low velocity. In 

addition, the leading edge vortex has not formed in the region visualized as can be 

deduced from the fact that the dye simply expands as it flows downstream, with the outer 

streaks being pushed towards the wing tips by the spanwise flow that develops on the 

wing. It is assumed that because of the upstream effect of the nut on the sting, the slight 

lifting of the yellow dye in the side-view is seen. 

It is further observed that for angle of attack, α = 14° (Figure 14), the dye-streaks 

flowing from the same outer locations has flowed toward the fuselage near the trailing 

edge crank location and a symmetrical spiral breakdown is seen at about 80% chord. This 

shows that a possible tip stall that is forcing them that way.  
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At a higher Reynolds number, Re, of 12,400, the flow visualization images 

obtained at angle of attack, α = 00 is shown in Figure 15. Once again, very good flow 

symmetry can be seen. Some flow reversals are seen behind the cranked portion of the 

trailing edge around the engine / wing-body junction. As the angle of attack is increased 

from 00 to 60 (Figure 16, Figure 17 and Figure 18), with separation of flow except flow to 

possibly stall at the tip, it appears to be similar to what was seen in Figure 13. As inferred 

from the blue-dye streak patterns, the flow at the fuselage moves away slightly from the 

symmetry pattern where the flow displacement, however, does not seem to have any 

preference.  At angle of attack, α = 80 (Figure 19) some asymmetry and a spiral 

breakdown is seen in the outer dye, but the inner flow appears to be essentially what was 

seen at lower angles of attack. There also appears to be some trailing edge flow reversals 

present since the yellow dye is smeared locally. 

From the flow visualization images obtained at angle of attack, α = 100 (Figure 20 

to Figure 23), since the effects of leading edge vortex have not taken place on the inner 

flow towards the fuselage on the port side, then, as expected, the spiral breakdown 

pattern is found on the outer flow. Nonetheless, the flow over the fuselage has 

encountered abrupt (bubble type) bursting on the starboard side, which also has caused 

the wing/body junction flow away from the fuselage and from the flow path of the blue 

dye observed, marked asymmetry has developed in the local. The flow completely breaks 

down at angles of attack greater than angle of attack, α = 160 (Figure 23 to Figure 26).  

From Figure 27 to Figure 30, it is seen that the effect of Reynolds number is to 

promote vortex breakdown. At low Re, the flow is well behaved angle of attack, α = 60, 

but the outermost portions of the flow are indicating vortex bursting at a higher Re. By 

angle of attack, α = 100, the vortex collapse process has become quite severe at the higher 

Re. 

From Figure 31, it is seen that there are areas of re-circulating flow at the 

underside of the wing from the slight pooling of the red-dye which indicates a roll-up  
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process.   However, at angle of attack, α = 120 (Figure 32), since the starboard tip shows 

an abundant of red dye stalling at the tip is deduced. Similar results are observed in 

Figure 33 and Figure 34. 

From the flow visualizations images of Figure 34 to Figure 38, it is observed from 

a simple ramp tope pitching studies conducted at different non-dimensional pitch rate,  

U
c

αα+ ∞= , that the unsteadiness increased from α+ = 0.05 to 0.1 delayed the stall onset 

considerably at the same angle of attack and Reynolds number. This has further 

demonstrated the well known deduction that unsteadiness delays stall onset or vortex 

bursting.  

Comparing to the results obtained with those from other experiments [8, 12] and 

CFD [15, 16, 17], the UCAV 1303 model used in this study was a scaled down but fully 

geometrically similar. The real UCAV 1303 has a three-dimensional shape, with in 

particular an increased thickness in the center part to house the engine, and an inlet just 

after the apex. It is obvious that these geometry differences have a strong influence on the 

flow development, especially in the centre part of the wing. The smaller scale UCAV 

1303 model indicates a sharper leading edge but the flow over it is still similar 

From experiments, the vortices seem to be developed at lower angle of attack, and 

more inboard. From the literature survey that when the Reynolds number decreases the 

vortex trajectory is shifted inboard and Reynolds number could be an explanation. The 

pressure distributions computed by CFD solvers show that the pitch break phenomenon is 

due to an increase of pressure on the outboard part of the wing [12, 18]. More exactly 

flow separation occurs near from the inboard crank, where the local chord is at a 

minimum, and produces a fully separated flow over the outboard part of the wing [9].  

Comparing to the studies conducted by Wong [12], flow visualization at angle of 

attack, α = 12° (Figure 21) showed flow development on the CFD model is different 

from what was obtained. The main difference is the fact that the separation on the CFD 

model appears far from the apex, approximately at the span location, whereas in these 

experiments, the flow was separated from the apex. These differences could be due to the 

very low Reynolds number of the experiments. 



 39

Flow visualizations indicate that the vortex breakdown begins to occur over the 

wing at incidences higher than 12°. From Qinetiq force and moment measurements [13],  

the pitch up appears around 8° and even at angles of attack as low as 6° with the sharp 

configuration. Since pitch break takes place at higher angle of attack, it is one of the main 

reasons when the displacement of the vortex collapses over the wing. Therefore, it is 

inferred that the pitch up phenomenon is independent of the vortex breakdown 

displacement [13]. There are no significant changes in the flow structure or velocity at 

this range of incidence, apart from the strong outflow observed and moving forward with 

increasing incidence. This outflow could be responsible for a loss of peak suction on the 

outboard part of the wing, as it is the case for the CFD computations, and is hence 

supporting the hypothesis of a tip stall generating the pitch break [12].  
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IV. CONCLUSION 

A.  SUMMARY 

This flow visualization study has been useful to gain a first understanding of the 

flow features over these low swept wings, but as is well known, it can only provide a 

qualitative view of the flow. From literature researches, since the flow visualization 

cannot be used to accurately quantify the flows over the UCAV 1303 model, velocity 

fields measurements are recommended as a method to determine the influence of the 

trailing edge instead [14].  

It is observed that flow over the UCAV 1303 model is complex with multiple 

vortices present even under steady conditions. Vortex busting occurs at higher angle of 

attack for low Re (steady flow) and is delayed with increase in pitch rate (unsteady flow). 

To improve aerodynamic lift, delay vortex busting as much as possible, flow 

visualization studies gives the first insight on the maneuverability of a UCAV by 

observing the location and the time of vortex bursting. It is noted that a non-dimensional 

pitch rate of α+ = 0.1 corresponds to about 3000 deg/sec pitch-up for a full scale aircraft, 

which is impossible if piloted.  

From the experiments, it is inferred that flow visualization unlike pressure 

distributions, cannot be used to determine the pitch break physical explanation. But, it 

serves as a valuable tool to assess the qualitative flow features well. The results obtained 

are different from experiments done in the wind tunnel because the vortex development is 

different and the comparison between the effects of vortices on the surface pressure 

distribution between the water tunnel experiments and the wind tunnel tests are lest 

speculative [19]. In addition, in wind tunnels testing, quantitative flow visualization 

studies are inconclusive and are more suitable for demonstration than for comprehensive 

scientific research [19].  
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B.  FUTURE WORK 

1. Steady Flow 

To continue with the qualitative studies at different water tunnel velocity for 

different roll and yaw angles 

2. Unsteady Flow 

To continue with the qualitative studies at different water tunnel velocity for 

different roll and yaw angles, and the non-dimensional pitch rates, and to conduct 

unsteady pitch-up maneuver studies, acquire load data as ensemble averages. Further 

generation, analyze steady and unsteady flow aerodynamic performance. 
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